Non-Hermitian localization and population biology
نویسندگان
چکیده
منابع مشابه
Non-Hermitian Localization and Population Biology
The time evolution of spatial fluctuations in inhomogeneous d-dimensional biological systems is analyzed. A single species continuous growth model, in which the population disperses via diffusion and convection is considered. Time-independent environmental heterogeneities, such as a random distribution of nutrients or sunlight are modeled by quenched disorder in the growth rate. Linearization o...
متن کاملPopulation Dynamics and Non-Hermitian Localization
We review localization with non-Hermitian time evolution as applied to simple models of population biology with spatially varying growth profiles and convection. Convection leads to a constant imaginary vector potential in the Schrödinger-like operator which appears in linearized growth models. We illustrate the basic ideas by reviewing how convection affects the evolution of a population influ...
متن کاملNon-Hermitian localization in biological networks.
We explore the spectra and localization properties of the N-site banded one-dimensional non-Hermitian random matrices that arise naturally in sparse neural networks. Approximately equal numbers of random excitatory and inhibitory connections lead to spatially localized eigenfunctions and an intricate eigenvalue spectrum in the complex plane that controls the spontaneous activity and induced res...
متن کاملRitz Value Localization for Non-Hermitian Matrices
Rayleigh–Ritz eigenvalue estimates for Hermitian matrices obey Cauchy interlacing, which has helpful implications for theory, applications, and algorithms. In contrast, few results about the Ritz values of non-Hermitian matrices are known, beyond their containment within the numerical range. To show that such Ritz values enjoy considerable structure, we establish regions within the numerical ra...
متن کاملWigner surmise for Hermitian and non-Hermitian chiral random matrices.
We use the idea of a Wigner surmise to compute approximate distributions of the first eigenvalue in chiral random matrix theory, for both real and complex eigenvalues. Testing against known results for zero and maximal non-Hermiticity in the microscopic large- N limit, we find an excellent agreement valid for a small number of exact zero eigenvalues. Compact expressions are derived for real eig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 1998
ISSN: 1063-651X,1095-3787
DOI: 10.1103/physreve.58.1383